Out-of-Distribution Detection using Synthetic Data Generation

Published: 04 Mar 2025, Last Modified: 17 Apr 2025ICLR 2025 Workshop SynthDataEveryoneRevisionsBibTeXCC BY 4.0
Keywords: synthetic data, Out-of-Distribution detection, Out-of-Distribution generalization
Abstract: Distinguishing in- and out-of-distribution (OOD) inputs is crucial for reliable deployment of classification systems. However, OOD data is typically unavailable or difficult to collect, posing a significant challenge for accurate OOD detection. In this work, we present a method that harnesses the generative capabilities of Large Language Models (LLMs) to create high-quality synthetic OOD proxies, eliminating the dependency on any external OOD data source. We study the efficacy of our method on classical text classification tasks such as toxicity detection and sentiment classification as well as classification tasks arising in LLM development and deployment, such as training a reward model for RLHF and detecting misaligned generations. Extensive experiments on nine InD-OOD dataset pairs and various model sizes show that our approach dramatically lowers false positive rates (achieving a perfect zero in some cases) while maintaining high accuracy on in-distribution tasks, outperforming baseline methods by a significant margin.
Submission Number: 43
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview