Data-Driven Capacity Planning for Vehicular Fog ComputingDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 11 May 2023IEEE Internet Things J. 2022Readers: Everyone
Abstract: The strict latency constraints of emerging vehicular applications make it unfeasible to forward sensing data from vehicles to the cloud for processing. To shorten network latency, vehicular fog computing (VFC) moves computation to the edge of the Internet, with the extension to support the mobility of distributed computing entities [a.k.a fog nodes (FNs)]. In other words, VFC proposes to complement stationary FNs co-located with cellular base stations with mobile ones carried by moving vehicles (e.g., buses). Previous works on VFC mainly focus on optimizing the assignments of computing tasks among available FNs. However, capacity planning, which decides where and how much computing resources to deploy, remains an open and challenging issue. The complexity of this problem results from the spatiotemporal dynamics of vehicular traffic, varying computing resource demand generated by vehicular applications, and the mobility of FNs. To solve the above challenges, we propose a data-driven capacity planning framework that optimizes the deployment of stationary and mobile FNs to minimize the installation and operational costs under the quality-of-service constraints, taking into account the spatiotemporal variation in both demand and supply. Using real-world traffic data and application profiles, we analyze the cost efficiency potential of VFC in the long term. We also evaluate the impacts of traffic patterns on the capacity plans and the potential cost savings. We find that high traffic density and significant hourly variation would lead to dense deployment of mobile FNs and create more savings in operational costs in the long term.
0 Replies

Loading