A Systematic Survey on Federated Semi-supervised Learning

Published: 01 Jan 2024, Last Modified: 14 Nov 2024IJCAI 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Federated learning (FL) revolutionizes distributed machine learning by enabling devices to collaboratively learn a model while maintaining data privacy. However, FL usually faces a critical challenge with limited labeled data, making semi-supervised learning (SSL) crucial for utilizing abundant unlabeled data. The integration of SSL within the federated framework gives rise to federated semi-supervised learning (FSSL), a novel approach that exploits unlabeled data across devices without compromising privacy. This paper systematically explores FSSL, shedding light on its four basic problem settings that commonly appear in real-world scenarios. By examining the unique challenges, generic solutions, and representative methods tailored for each setting of FSSL, we aim to provide a cohesive overview of the current state of the art and pave the way for future research directions in this promising field.
Loading