Escaping Saddle Points with Compressed SGDDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: optimization, distributed optimization, nonconvex optimization, machine learning, gradient descent, saddle points
TL;DR: SGD with compressor converges to a second-order stationary point with improved total communication
Abstract: Stochastic gradient descent (SGD) is a prevalent optimization technique for large-scale distributed machine learning. While SGD computation can be efficiently divided between multiple machines, communication typically becomes a bottleneck in the distributed setting. Gradient compression methods can be used to alleviate this problem, and a recent line of work shows that SGD augmented with gradient compression converges to an $\varepsilon$-first-order stationary point. In this paper we extend these results to convergence to an $\varepsilon$-second-order stationary point ($\varepsilon$-SOSP), which is to the best of our knowledge the first result of this type. In addition, we show that, when the stochastic gradient is not Lipschitz, compressed SGD with RandomK compressor converges to an $\varepsilon$-SOSP with the same number of iterations as uncompressed SGD [Jin et al.,2021] (JACM), while improving the total communication by a factor of $\tilde \Theta(\sqrt{d} \varepsilon^{-3/4})$, where $d$ is the dimension of the optimization problem. We present additional results for the cases when the compressor is arbitrary and when the stochastic gradient is Lipschitz.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Code: zip
10 Replies