Comparison of Deep Learning Approaches for Protective Behaviour Detection Under Class Imbalance from MoCap and EMG data

Abstract: The AffecMove challenge organised in the context of the H2020 EnTimeMent project offers three tasks of movement classification in realistic settings and use-cases. Our team, from the EuroMov DHM laboratory participated in Task 1, for protective behaviour (against pain) detection from motion capture data and EMG, in patients suffering from pain-inducing muskuloskeletal disorders. We implemented two simple baseline systems, one LSTM system with pre-training (NTU-60) and a Transformer. We also adapted PA-ResGCN a Graph Convolutional Network for skeleton-based action classification showing state-of-the-art (SOTA) performance to protective behaviour detection, augmented with strategies to handle class-imbalance. For PA-ResGCN-N51 we explored naïve fusion strategies with an EMG-only convolutional neural network that didn't improve the overall performance. Unsurprisingly, the best performing system was PA-ResGCN-N51 (w/o EMG) with a F <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> score of 53.36% on the test set for the minority class (MCC 0.4247). The Transformer baseline (MoCap + EMG) came second at 41.05% F <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> test performance (MCC 0.3523) and the LSTM baseline third at 31.16% F <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> (MCC 0.1763). On the validation set the LSTM showed performance comparable to PA-ResGCN, we hypothesize that the LSTM over-fitted on the validation set that wasn't very representative of the train/test distribution.
0 Replies
Loading