Statistical Inference for Fisher Market EquilibriumDownload PDF

Published: 01 Feb 2023, Last Modified: 06 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Fisher market equilibrium, first-price auction, statistical inference under interference, revenue management
TL;DR: We propose a statistical inference framework for Fisher market equilibrium.
Abstract: Statistical inference under market equilibrium effects has attracted increasing attention recently. In this paper we focus on the specific case of linear Fisher markets. They have been widely use in fair resource allocation of food/blood donations and budget management in large-scale Internet ad auctions. In resource allocation, it is crucial to quantify the variability of the resource received by the agents (such as blood banks and food banks) in addition to fairness and efficiency properties of the systems. For ad auction markets, it is important to establish statistical properties of the platform's revenues in addition to their expected values. To this end, we propose a statistical framework based on the concept of infinite-dimensional Fisher markets. In our framework, we observe a market formed by a finite number of items sampled from an underlying distribution (the ``observed market'') and aim to infer several important equilibrium quantities of the underlying long-run market. These equilibrium quantities include individual utilities, social welfare, and pacing multipliers. Through the lens of sample average approximation (SSA), we derive a collection of statistical results and show that the observed market provides useful statistical information of the long-run market. In other words, the equilibrium quantities of the observed market converge to the true ones of the long-run market with strong statistical guarantees. These include consistency, finite sample bounds, asymptotics, and confidence. As an extension, we discuss revenue inference in quasilinear Fisher markets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Supplementary Material: zip
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
12 Replies

Loading