CriticBench: Evaluating Large Language Models as CriticDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Critique ability are crucial in the scalable oversight and self-improvement of Large Language Models (LLMs). While many recent studies explore the critique ability of LLMs to judge and refine flaws in generations, how to comprehensively and reliably measure the critique abilities of LLMs is under-explored. This paper introduces CriticBench, a novel benchmark designed to comprehensively and reliably evaluate four key critique ability dimensions of LLMs: feedback, comparison, refinement and meta-feedback. CriticBench encompasses nine diverse tasks, each assessing the LLMs' ability to critique responses at varying levels of quality granularity. Our extensive evaluations of open-source and closed-source LLMs reveal intriguing relationships between the critique ability and tasks, response qualities, and model scales. Datasets, resources and evaluation toolkit for CriticBench will be released.
Paper Type: long
Research Area: Resources and Evaluation
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Publicly available software and/or pre-trained models, Data resources, Data analysis
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview