Efficient Multi-Task Reinforcement Learning via Selective Behavior SharingDownload PDF

22 Sept 2022, 12:30 (modified: 26 Oct 2022, 13:54)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Reinforcement Learning, Multitask Reinforcement Learning
TL;DR: Sharing behaviors between tasks to improve exploration for multitask reinforcement learning.
Abstract: The ability to leverage shared behaviors between tasks is critical for sample efficient multi-task reinforcement learning (MTRL). Prior approaches based on parameter sharing or policy distillation share behaviors uniformly across tasks and states or focus on learning one optimal policy. Therefore, they are fundamentally limited when tasks have conflicting behaviors because no one optimal policy exists. Our key insight is that, we can instead share exploratory behavior which can be helpful even when the optimal behaviors differ. Furthermore, as we learn each task, we can guide the exploration by sharing behaviors in a task and state dependent way. To this end, we propose a novel MTRL method, Q-switch Mixture of policies (QMP), that learns to selectively shares exploratory behavior between tasks by using a mixture of policies based on estimated discounted returns to gather training data. Experimental results in manipulation and locomotion tasks demonstrate that our method outperforms prior behavior sharing methods, highlighting the importance of task and state dependent sharing.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
5 Replies