Fair Federated Learning via Bounded Group LossDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Federated Learning, Group Fairness
Abstract: In federated learning, fair prediction across protected groups is an important constraint for many applications. Unfortunately, prior work studying group fair federated learning lacks formal convergence or fairness guarantees. In this work we propose a general framework for provably fair federated learning. In particular, we explore and extend the notion of Bounded Group Loss as a theoretically-grounded approach for group fairness. Using this setup, we propose a scalable federated optimization method that optimizes the empirical risk under a number of group fairness constraints. We provide convergence guarantees for the method as well as fairness guarantees for the resulting solution. Empirically, we evaluate our method across common benchmarks from fair ML and federated learning, showing that it can provide both fairer and more accurate predictions than baseline approaches.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
Supplementary Material: zip
15 Replies

Loading