Abstract: This paper considers the problem of adaptive group testing for isolating up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$k$</tex-math></inline-formula> defective items from a population of size <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> . There exist restrictions or preferences which determine how the items can be pooled for testing. A graphical model formalizes the pooling restrictions and preferences. Such graph-constrained group testing is investigated in three settings: populations with defectives, populations facing the potential presence of inhibitors, and populations with community structures. Adaptive group testing frameworks are provided for each setting. In populations without inhibitors, existing non adaptive frameworks can isolate the defective items perfectly with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Theta(k \log n/k)$</tex-math></inline-formula> number of tests, where is the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\beta$</tex-math></inline-formula> -mixing time of a random walk over the underlying graph. This paper provides a two-stage framework that can perfectly isolate up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$k$</tex-math></inline-formula> defective items for a regular graph using <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Theta(k2 \log n k + k)$</tex-math></inline-formula> number of tests, thus achieving an approximate gain of a factor of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$k$</tex-math></inline-formula> over the non-adaptive frameworks. This twostage framework's principles are extended to community-structured graphs and graphs with up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$r$</tex-math></inline-formula> inhibitor items. In particular, when inhibitors are present in the graph, a four-stage group testing framework is proposed. The results show that in the regime <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$r= O(k)$</tex-math></inline-formula> for a fully connected graph, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Theta ((k+r)\log n/(k+r) + r\log n)$</tex-math></inline-formula> tests are sufficient for isolating the defective items. This matches the corresponding necessary condition on tests which scales <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(k+r)\log n$</tex-math></inline-formula> . The adaptive graphconstrained group testing framework is also empirically evaluated.
0 Replies
Loading