Abstract: The functional brain network exhibits a hierarchical characterized organization, balancing localized specialization with global integration through multi-scale hierarchical connectivity. While graph-based methods have advanced brain network analysis, conventional graph neural networks (GNNs) face interpretational limitations when modeling functional connectivity (FC) that encodes excitatory/inhibitory distinctions, often resorting to oversimplified edge weight transformations. Existing methods usually inadequately represent the brain’s hierarchical organization, potentially missing critical information about multi-scale feature interactions. To address these limitations, we propose a novel brain network generation and analysis approach–Dynamic Hierarchical Graph Transformer (DHGFormer). Specifically, our method introduces an FC-inspired dynamic attention mechanism that adaptively encodes brain excitatory/inhibitory connectivity patterns into transformer-based representations, enabling dynamic adjustment of the functional brain network. Furthermore, we design hierarchical GNNs that consider prior functional subnetwork knowledge to capture intra-subnetwork homogeneity and inter-subnetwork heterogeneity, thereby enhancing GNN performance in brain disease diagnosis tasks. Extensive experiments on the ABIDE and ADNI datasets demonstrate that DHGFormer consistently outperforms state-of-the-art methods in diagnosing neurological disorders. The code is available at https://github.com/iMoonLab/DHGFormer.
External IDs:dblp:conf/miccai/XueHZHWGD25
Loading