Learning the Co-evolution Process on Live Stream Platforms with Dual Self-attention for Next-topic Recommendations
Abstract: Live stream platforms have gained popularity in light of emerging social media platforms. Unlike traditional on-demand video platforms, viewers and streamers on the live stream platforms are able to interact in real-time, and this makes viewer interests and live stream topics mutually affect each other on the fly, which is the unique co-evolution phenomenon on live stream platforms. In this paper, we make the first attempt to introduce a novel next-topic recommendation problem for the streamers, LSNR, which incorporates the co-evolution phenomenon. A novel framework CENTR introducing the Co-evolutionary Sequence Embedding Structure that captures the temporal relations of viewer interests and live stream topic sequences with two stacks of self-attention layers is proposed. Instead of learning the sequences individually, a novel dual self-attention mechanism is designed to model interactions between the sequences. The dual self-attention includes two modules, LCA and LVA, to leverage viewer loyalty to improve efficiency and flexibility. Finally, to facilitate cold-start recommendations for new streamers, a collaborative diffusion mechanism is implemented to improve a meta learner. Through the experiments in real datasets, CENTR outperforms state-of-the-art recommender systems in both regular and cold-start scenarios.
Loading