Zero-Shot Text Matching for Automated Auditing using Sentence TransformersDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 12 May 2023ICMLA 2022Readers: Everyone
Abstract: Natural language processing methods have several applications in automated auditing, including document or passage classification, information retrieval, and question answering. However, training such models requires a large amount of annotated data which is scarce in industrial settings. At the same time, techniques like zero-shot and unsupervised learning allow for application of models pre-trained using general domain data to unseen domains.In this work, we study the efficiency of unsupervised text matching using Sentence-Bert, a transformer-based model, by applying it to the semantic similarity of financial passages. Experimental results show that this model is robust to documents from in- and out-of-domain data.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview