Abstract: 3D reconstruction of cerebral vasculature from 2D biplanar projections could significantly improve diagnosis and treatment planning. We introduce a novel approach to tackle this challenging task by initially backprojecting the two projections, a process that traditionally results in unsatisfactory outcomes due to inherent ambiguities. To overcome this, we employ a U-Net approach trained to resolve these ambiguities, leading to significant improvement in reconstruction quality. The process is further refined using a Maximum A Posteriori strategy with a prior that favors continuity, leading to enhanced 3D reconstructions. We evaluated our approach using a comprehensive dataset comprising segmentations from approximately 700 MR angiography scans, from which we generated paired realistic biplanar DRRs. Upon testing with held-out data, our method achieved an 80% Dice similarity w.r.t the ground truth, superior to existing methods. Our code and dataset are available at https://github.com/Wapity/3DBrainXVascular.
Loading