Abstract: In this work, we aim to clarify and reconcile metrics for evaluating privacy protection in text through a systematic survey.
Although text anonymization is essential for enabling NLP research and model development in domains with sensitive data, evaluating whether anonymization methods sufficiently protect privacy remains an open challenge. In manually reviewing 43 papers that report privacy metrics, we identify and compare six distinct privacy notions and analyze how the associated metrics capture different aspects of privacy risk. We then assess how well these notions align with legal privacy standards (HIPAA and GDPR), as well as user-centered expectations grounded in HCI studies. Our analysis offers practical guidance on navigating the landscape of privacy evaluation approaches further and highlights gaps in current practices. Ultimately, we aim to facilitate more robust, comparable, and legally aware privacy evaluations in text anonymization.
Paper Type: Long
Research Area: Resources and Evaluation
Research Area Keywords: evaluation methodologies, metrics, privacy, survey
Contribution Types: Surveys
Languages Studied: English
Reassignment Request Area Chair: This is not a resubmission
Reassignment Request Reviewers: This is not a resubmission
Data: zip
A1 Limitations Section: This paper has a limitations section.
A2 Potential Risks: N/A
B Use Or Create Scientific Artifacts: Yes
B1 Cite Creators Of Artifacts: Yes
B1 Elaboration: See Section 2 and supplementary spreadsheet for citations of all papers and artifacts surveyed.
B2 Discuss The License For Artifacts: N/A
B3 Artifact Use Consistent With Intended Use: N/A
B4 Data Contains Personally Identifying Info Or Offensive Content: N/A
B5 Documentation Of Artifacts: N/A
B6 Statistics For Data: N/A
C Computational Experiments: No
C1 Model Size And Budget: N/A
C2 Experimental Setup And Hyperparameters: N/A
C3 Descriptive Statistics: N/A
C4 Parameters For Packages: N/A
D Human Subjects Including Annotators: No
D1 Instructions Given To Participants: N/A
D2 Recruitment And Payment: N/A
D3 Data Consent: N/A
D4 Ethics Review Board Approval: N/A
D5 Characteristics Of Annotators: N/A
E Ai Assistants In Research Or Writing: No
E1 Information About Use Of Ai Assistants: N/A
Author Submission Checklist: yes
Submission Number: 1070
Loading