For Better or For Worse? Learning Minimum Variance Features With Label Augmentation

Published: 22 Jan 2025, Last Modified: 13 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: feature learning, mixup, label smoothing, spurious correlations
TL;DR: Mixup and label smoothing are biased towards learning low variance features in the data, which is empirically verified by looking at the variance of activations in trained neural networks..
Abstract: Data augmentation has been pivotal in successfully training deep learning models on classification tasks over the past decade. An important subclass of data augmentation techniques - which includes both label smoothing and Mixup - involves modifying not only the input data but also the input label during model training. In this work, we analyze the role played by the label augmentation aspect of such methods. We first prove that linear models on binary classification data trained with label augmentation learn only the minimum variance features in the data, while standard training (which includes weight decay) can learn higher variance features. We then use our techniques to show that even for nonlinear models and general data distributions, the label smoothing and Mixup losses are lower bounded by a function of the model output variance. Lastly, we demonstrate empirically that this aspect of label smoothing and Mixup can be a positive and a negative. On the one hand, we show that the strong performance of label smoothing and Mixup on image classification benchmarks is correlated with learning low variance hidden representations. On the other hand, we show that Mixup and label smoothing can be more susceptible to low variance spurious correlations in the training data.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5085
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview