Non-geodesically-convex optimization in the Wasserstein space

Published: 25 Sept 2024, Last Modified: 07 Jan 2025NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Wasserstein space, DC programming, nonconvex optimization, KL divergence
Abstract: We study a class of optimization problems in the Wasserstein space (the space of probability measures) where the objective function is nonconvex along generalized geodesics. Specifically, the objective exhibits some difference-of-convex structure along these geodesics. The setting also encompasses sampling problems where the logarithm of the target distribution is difference-of-convex. We derive multiple convergence insights for a novel semi Forward-Backward Euler scheme under several nonconvex (and possibly nonsmooth) regimes. Notably, the semi Forward-Backward Euler is just a slight modification of the Forward-Backward Euler whose convergence is---to our knowledge---still unknown in our very general non-geodesically-convex setting.
Primary Area: Optimization (convex and non-convex, discrete, stochastic, robust)
Submission Number: 9981
Loading