Abstract: Multiplier design---which aims to explore a large combinatorial design space to simultaneously optimize multiple conflicting objectives---is a fundamental problem in the integrated circuits industry. Although traditional approaches tackle the multi-objective multiplier optimization problem by manually designed heuristics, reinforcement learning (RL) offers a promising approach to discover high-speed and area-efficient multipliers. However, the existing RL-based methods struggle to find Pareto-optimal circuit designs for all possible preferences, i.e., weights over objectives, in a sample-efficient manner. To address this challenge, we propose a novel hierarchical adaptive (HAVE) multi-task reinforcement learning framework. The hierarchical framework consists of a meta-agent to generate diverse multiplier preferences, and an adaptive multi-task agent to collaboratively optimize multipliers conditioned on the dynamic preferences given by the meta-agent. To the best of our knowledge, HAVE is the first to well approximate Pareto-optimal circuit designs for the entire preference space with high sample efficiency. Experiments on multipliers across a wide range of input widths demonstrate that HAVE significantly Pareto-dominates state-of-the-art approaches, achieving up to 28% larger hypervolume. Moreover, experiments demonstrate that multipliers designed by HAVE can well generalize to large-scale computation-intensive circuits.
Submission Number: 9153
Loading