TA-SBERT: Token Attention Sentence-BERT for Improving Sentence RepresentationDownload PDFOpen Website

2022 (modified: 17 Nov 2022)IEEE Access 2022Readers: Everyone
Abstract: A sentence embedding vector can be obtained by connecting a global average pooling (GAP) to a pre-trained language model. The problem of such a sentence embedding vector using a GAP is that it is generated with the same weight for all words appearing in the sentence. We propose a novel sentence embedding-method-based model Token Attention-SentenceBERT (TA-SBERT) to address this problem. The rationale of TA-SBERT is to enhance the performance of sentence embedding by introducing three strategies. First, we convert the base form while preprocessing the input sentence to reduce misunderstanding. Second, we propose a novel Token Attention (TA) technique that distinguishes important words to produce more informative sentence vectors. Third, we increase stability of fine-tuning to avoid catastrophic forgetting by adding a reconstruction loss to the word embedding vector. Extensive ablation studies demonstrate that our TA-SBERT outperforms the original SentenceBERT (SBERT) in the sentence vector evaluation using semantic textual similarity (STS) tasks and the SentEval toolkit.
0 Replies

Loading