Abstract: Biodiversity data (e.g., for aquatic organisms, marine creatures and terrestrial animals) and environmental data (e.g., air pollution statistics, water supply and sanitation information, soil contamination data) are examples of big data. Embedded in these big data are implicit, previously unknown and potentially useful information and knowledge that could help improve the ecosystem. As such, data science solutions for big data analytics and mining are in demand. In this paper, we present a data science solution for biodiversity informatics, environmental analytics and sustainability analysis. Specifically, our solution analyzes and mines both biodiversity data and environmental data to examine the impacts of pollution to moving objects. The convex-hull-based method in our solution estimates the pollution exposure to these objects. For evaluation, we conducted case studies on analyzing, mining and visualizing both marine biodiversity data and plastic exposure data to examine the impacts of the plastic exposure to marine creatures. Knowledge discovered by our solution help decision and policy makers to take appropriate actions in building and maintaining a sustainable environment.
Loading