Abstract: This work investigates the problem of instance-level image retrieval re-ranking with the constraint of memory efficiency, ultimately aiming to limit memory usage to 1 KB per image. Departing from the prevalent focus on performance enhancements, this work prioritizes the crucial trade-off between performance and memory requirements. The proposed model uses a transformer-based architecture designed to estimate image-to-image similarity by capturing interactions within and across images based on their local descriptors. A distinctive property of the model is the capability for asymmetric similarity estimation. Database images are represented with a smaller number of descriptors compared to query images, enabling performance improvements without increasing memory consumption. To ensure adaptability across different applications, a universal model is introduced that adjusts to a varying number of local descriptors during the testing phase. Results on standard benchmarks demonstrate the superiority of our approach over both hand-crafted and learned models. In particular, compared with current state-of-the-art methods that overlook their memory footprint, our approach not only attains superior performance but does so with a significantly reduced memory footprint. The code and pretrained models are publicly available at: https://github.com/pavelsuma/ames.
Loading