Improving flash-based disk cache with Lazy Adaptive Replacement

Published: 01 Jan 2013, Last Modified: 07 Aug 2024MSST 2013EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The increasing popularity of flash memory has changed storage systems. Flash-based solid state drive(SSD) is now widely deployed as cache for magnetic hard disk drives(HDD) to speed up data intensive applications. However, existing cache algorithms focus exclusively on performance improvements and ignore the write endurance of SSD. In this paper, we proposed a novel cache management algorithm for flash-based disk cache, named Lazy Adaptive Replacement Cache(LARC). LARC can filter out seldom accessed blocks and prevent them from entering cache. This avoids cache pollution and keeps popular blocks in cache for a longer period of time, leading to higher hit rate. Meanwhile, LARC reduces the amount of cache replacements thus incurs less write traffics to SSD, especially for read dominant workloads. In this way, LARC improves performance and extends SSD lifetime at the same time. LARC is self-tuning and low overhead. It has been extensively evaluated by both trace-driven simulations and a prototype implementation in flashcache. Our experiments show that LARC outperforms state-of-art algorithms and reduces write traffics to SSD by up to 94.5% for read dominant workloads, 11.2-40.8% for write dominant workloads.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview