CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Video Generation, Diffusion model, Pretraining
Abstract:

We present CogVideoX, a large-scale text-to-video generation model based on diffusion transformer, which can generate 10-second continuous videos that align seamlessly with text prompts, with a frame rate of 16 fps and resolution of 768 x 1360 pixels. Previous video generation models often struggled with limited motion and short durations. It is especially difficult to generate videos with coherent narratives based on text. We propose several designs to address these issues. First, we introduce a 3D Variational Autoencoder (VAE) to compress videos across spatial and temporal dimensions, enhancing both the compression rate and video fidelity. Second, to improve text-video alignment, we propose an expert transformer with expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. Third, by employing progressive training and multi-resolution frame packing, CogVideoX excels at generating coherent, long-duration videos with diverse shapes and dynamic movements. In addition, we develop an effective pipeline that includes various pre-processing strategies for text and video data. Our innovative video captioning model significantly improves generation quality and semantic alignment. Results show that CogVideoX achieves state-of-the-art performance in both automated benchmarks and human evaluation. We publish the code and model checkpoints of CogVideoX along with our VAE model and video captioning model at https://github.com/THUDM/CogVideo.

Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9207
Loading