Memory Augmented Cross-encoders for Controllable Personalized Search

Published: 2024, Last Modified: 14 Jan 2026CoRR 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Personalized search is a problem where models benefit from learning user preferences from per-user historical interaction data. The inferred preferences enable personalized ranking models to improve the relevance of documents for users. However, personalization is also seen as opaque in its use of historical interactions and is not amenable to users' control. Further, personalization limits the diversity of information users are exposed to. While search results may be automatically diversified this does little to address the lack of control over personalization. In response, we introduce a model for personalized search that enables users to control personalized rankings proactively. Our model, CtrlCE, is a novel cross-encoder model augmented with an editable memory built from users' historical interactions. The editable memory allows cross-encoders to be personalized efficiently and enables users to control personalized ranking. Next, because all queries do not require personalization, we introduce a calibrated mixing model which determines when personalization is necessary. This enables users to control personalization via their editable memory only when necessary. To thoroughly evaluate CtrlCE, we demonstrate its empirical performance in four domains of science, its ability to selectively request user control in a calibration evaluation of the mixing model, and the control provided by its editable memory in a user study.
Loading