Last-Iterate Convergence Properties of Regret-Matching Algorithms in Games

ICLR 2025 Conference Submission8389 Authors

27 Sept 2024 (modified: 18 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Last-Iterate Convergence, Minty solution, Regret Matching, Zero-Sum Game, Learning in Games
Abstract: We study last-iterate convergence properties of algorithms for solving two-player zero-sum games based on Regret Matching$^+$ (RM$^+$). Despite their widespread use for solving real games, virtually nothing is known about their last-iterate convergence. A major obstacle to analyzing RM-type dynamics is that their regret operators lack Lipschitzness and (pseudo)monotonicity. We start by showing numerically that several variants used in practice, such as RM$^+$, predictive RM$^+$ and alternating RM$^+$, all lack last-iterate convergence guarantees even on a simple $3\times 3$ matrix game. We then prove that recent variants of these algorithms based on a smoothing technique, extragradient RM$^{+}$ and smooth Predictive RM$^+$, enjoy asymptotic last-iterate convergence (without a rate), $1/\sqrt{t}$ best-iterate convergence, and when combined with restarting, linear-rate last-iterate convergence. Our analysis builds on a new characterization of the geometric structure of the limit points of our algorithms, marking a significant departure from most of the literature on last-iterate convergence. We believe that our analysis may be of independent interest and offers a fresh perspective for studying last-iterate convergence in algorithms based on non-monotone operators.
Supplementary Material: zip
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8389
Loading