Research Area: Data, LMs with tools and code, LMs on diverse modalities and novel applications
Keywords: Transformer, translation, transpilation, binary translation, compiler, software migration
TL;DR: We train a Transformer to translate legacy assembly code into LLVM intermediate representations to later recompile to the architecture of choice. We show that we can freeze the decoder and fine tune the encoder to continually support new ISAs.
Abstract: The escalating demand to migrate legacy software across different Instruction Set Architectures (ISAs) has driven the development of assembly-to-assembly translators to map between their respective assembly languages. However, the development of these tools requires substantial engineering effort. State-of-the-art approaches use lifting, a technique where source assembly code is translated to an architecture-independent intermediate representation (IR) — for example, the LLVM IR — and use a pre-existing compiler to recompile the IR to the target ISA. However, the hand-written rules these lifters employ are sensitive to the particular compiler and optimization level used to generate the code and require significant engineering effort to support each new ISA. We propose Forklift, the first neural lifter that learns how to translate assembly to LLVM IR using a token-level encoder-decoder Transformer. We show how to incrementally add support to new ISAs by fine tuning the assembly encoder and freezing the IR decoder, improving the overall accuracy and efficiency. We collect millions of parallel LLVM IR, x86, ARM, and RISC-V programs across compilers and optimization levels to train Forklift and set up an input/output-based accuracy harness. We evaluate Forklift on two challenging benchmark suites and translate 2.5x more x86 programs than a state-of-the-art hand-written lifter and 4.4x more x86 programs than GPT-4 as well as enabling translation from new ISAs.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 1195
Loading