Abstract: This paper considers “ <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> -almost Reed–Muller codes”, i.e., linear codes spanned by evaluations of all but a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> fraction of monomials of degree at most <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> . It is shown that for any <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta > 0$ </tex-math></inline-formula> and any <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\varepsilon >0$ </tex-math></inline-formula> , there exists a family of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> -almost Reed–Muller codes of constant rate that correct <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1/2- \varepsilon $ </tex-math></inline-formula> fraction of random errors with high probability. For exact Reed–Muller codes, the analogous result is not known and represents a weaker version of the longstanding conjecture that Reed–Muller codes achieve capacity for random errors (Abbe-Shpilka-Wigderson STOC ’15). Our proof is based on the recent polarization result for Reed–Muller codes, combined with a combinatorial approach to establishing inequalities between the Reed–Muller code entropies.
0 Replies
Loading