Learning to Cooperate and Communicate Over Imperfect ChannelsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: multi-agent systems, deep reinforcement learning, emergent communication, imperfect communication channels
TL;DR: We investigate communication in multi-agent reinforcement learning and propose an adaptive message size selection that enables agents to use an imperfect communication channel more efficiently.
Abstract: Information exchange in multi-agent systems improves the cooperation among agents, especially in partially observable settings. This can be seen as part of the problem in which the agents learn how to communicate and to solve a shared task simultaneously. In the real world, communication is often carried out over imperfect channels and this requires the agents to deal with uncertainty due to potential information loss. In this paper, we consider a cooperative multi-agent system where the agents act and exchange information in a decentralized manner using a limited and unreliable channel. To cope with such channel constraints, we propose a novel communication approach based on independent Q-learning. Our method allows agents to dynamically adapt how much information to share by sending messages of different size, depending on their local observations and the channel properties. In addition to this message size selection, agents learn to encode and decode messages to improve their policies. We show that our approach outperforms approaches without adaptive capabilities and discuss its limitations in different environments.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
Supplementary Material: zip
8 Replies

Loading