Efficient and Accurate Explanation Estimation with Distribution Compression

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: explainable ai, feature attributions, feature importance, sampling, kernel thinning
Abstract: We discover a theoretical connection between explanation estimation and distribution compression that significantly improves the approximation of feature attributions, importance, and effects. While the exact computation of various machine learning explanations requires numerous model inferences and becomes impractical, the computational cost of approximation increases with an ever-increasing size of data and model parameters. We show that the standard i.i.d. sampling used in a broad spectrum of algorithms for post-hoc explanation leads to an approximation error worthy of improvement. To this end, we introduce Compress Then Explain (CTE), a new paradigm of sample-efficient explainability. It relies on distribution compression through kernel thinning to obtain a data sample that best approximates its marginal distribution. CTE significantly improves the accuracy and stability of explanation estimation with negligible computational overhead. It often achieves an on-par explanation approximation error 2-3x faster by using fewer samples, i.e. requiring 2-3x fewer model evaluations. CTE is a simple, yet powerful, plug-in for any explanation method that now relies on i.i.d. sampling.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7423
Loading