Audio Super-Resolution with Latent Bridge Models

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: audio super-resolution, latent bridge models, cascaded models, audio generation, audio enhancement
Abstract: Audio super-resolution (SR), i.e., upsampling the low-resolution (LR) waveform to the high-resolution (HR) version, has recently been explored with diffusion and bridge models, while previous methods often suffer from sub-optimal upsampling quality due to their uninformative generation prior. Towards high-quality audio super-resolution, we present a new system with latent bridge models (LBMs), where we compress the audio waveform into a continuous latent space and design an LBM to enable a latent-to-latent generation process that naturally matches the LR-to-HR upsampling process, thereby fully exploiting the instructive prior information contained in the LR waveform. To further enhance the training results despite the limited availability of HR samples, we introduce frequency-aware LBMs, where the prior and target frequency are taken as model input, enabling LBMs to explicitly learn an any-to-any upsampling process at the training stage. Furthermore, we design cascaded LBMs and present two prior augmentation strategies, where we make the first attempt to unlock the audio upsampling beyond 48 kHz and empower a seamless cascaded SR process, providing higher flexibility for audio post-production. Comprehensive experimental results evaluated on the VCTK, ESC-50, Song-Describer benchmark datasets and two internal testsets demonstrate that we achieve state-of-the-art objective and perceptual quality for any-to-48 kHz SR across speech, audio, and music signals, as well as setting the first record for any-to-192kHz audio SR. Demo at https://AudioLBM.github.io/.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 1079
Loading