Keywords: neural implicit surface reconstruction, multi-view surface reconstruction, hierarchical volume encoding
Abstract: Neural implicit surface reconstruction has become a new trend in reconstructing a detailed 3D shape from images. In previous methods, however, the 3D scene is only encoded by the MLPs which do not have an explicit 3D structure. To better represent 3D shapes, we introduce a volume encoding to explicitly encode the spatial information. We further design hierarchical volumes to encode the scene structures in multiple scales. The high-resolution volumes capture the high-frequency geometry details since spatially varying features could be learned from different 3D points, while the low-resolution volumes enforce the spatial consistency to keep the shape smooth since adjacent locations possess the same low-resolution feature. In addition, we adopt a sparse structure to reduce the memory consumption at high-resolution volumes, and two regularization terms to enhance results smoothness. This hierarchical volume encoding could be appended to any implicit surface reconstruction method as a plug-and-play module, and can generate a smooth and clean reconstruction with more details. Superior performance is demonstrated in DTU, EPFL, and BlendedMVS datasets with significant improvement on the standard metrics. The code of our method will be made public.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
12 Replies
Loading