Abstract: Author Summary Simultaneous analysis of large-scale neural populations is necessary to understand coding principles of neurons because they concertedly process information. Methods of thermodynamics and statistical mechanics are useful to understand collective phenomena of the interacting elements, and they have been successfully used to understand diverse activity of neurons. However, most analysis methods assume stationary data, in which activity rates of neurons and their correlations are constant over time. This assumption is easily violated in the data recorded from awake animals. Neural correlations likely organize dynamically during behavior and cognition, and this may be independent from the modulated activity rates of individual neurons. Recently several methods were proposed to simultaneously estimate dynamics of neural interactions. However, these methods are applicable to up to about 10 neurons. Here by combining multiple analytic approximation methods, we made it possible to estimate time-varying interactions of much larger neural populations. The method allows us to trace dynamic macroscopic properties of neural circuitries such as sparseness, entropy, and sensitivity. Using these statistics, researchers can now quantify to what extent neurons are correlated or de-correlated, and test if neural systems are susceptible within a specific behavioral period.
0 Replies
Loading