Eliciting Human Preferences with Language Models

ICLR 2025 Conference Submission12207 Authors

27 Sept 2024 (modified: 21 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: question asking, preference elicitation, language models, evaluation, human studies
TL;DR: learning personalized models by asking questions in language
Abstract: Language models (LMs) can be directed to perform user- and context-dependent tasks by using labeled examples or natural language prompts. But selecting examples or writing prompts can be challenging---especially in tasks that require users to precisely articulate nebulous preferences or reason about complex edge cases. For such tasks, we introduce **Generative Active Task Elicitation (GATE)**, a method for using *LMs themselves* to guide the task specification process. GATE is a learning framework in which models elicit and infer human preferences through free-form, language-based interaction with users. We identify prototypical challenges that users face when specifying preferences, and design three preference modeling tasks to study these challenges: content recommendation, moral reasoning, and email validation. In preregistered experiments, we show that LMs that learn to perform these tasks using GATE (by interactively querying users with open-ended questions) obtain preference specifications that are more informative than user-written prompts or examples. GATE matches existing task specification methods in the moral reasoning task, and significantly outperforms them in the content recommendation and email validation tasks. Users additionally report that interactive task elicitation requires less effort than prompting or example labeling and surfaces considerations that they did not anticipate on their own. Our findings suggest that LM-driven elicitation can be a powerful tool for aligning models to complex human preferences and values.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12207
Loading