UniMAE: Multi-modal Masked Autoencoders with Unified 3D Representation for 3D Perception in Autonomous Driving
Abstract: Masked Autoencoders (MAE) play a pivotal role in learning potent representations, delivering outstanding results across various 3D perception tasks essential for autonomous driving. In real-world driving scenarios, it’s commonplace to deploy multiple sensors for comprehensive environment perception. Despite integrating multi-modal features from these sensors can produce rich and powerful features, there is a noticeable challenge in MAE methods addressing this integration due to the substantial disparity between the different modalities. This research delves into multi-modal Masked Autoencoders tailored for a unified representation space in autonomous driving, aiming to pioneer a more efficient fusion of two distinct modalities. To intricately marry the semantics inherent in images with the geometric intricacies of LiDAR point clouds, we propose UniM\(^2\)AE. This model stands as a potent yet straightforward, multi-modal self-supervised pre-training framework, mainly consisting of two designs. First, it projects the features from both modalities into a cohesive 3D volume space to intricately marry the bird’s eye view (BEV) with the height dimension. The extension allows for a precise representation of objects and reduces information loss when aligning multi-modal features. Second, the Multi-modal 3D Interactive Module (MMIM) is invoked to facilitate the efficient inter-modal interaction during the interaction process. Extensive experiments conducted on the nuScenes Dataset attest to the efficacy of UniM\(^2\)AE, indicating enhancements in 3D object detection and BEV map segmentation by 1.2% NDS and 6.5% mIoU, respectively. The code is available at https://github.com/hollow-503/UniM2AE.
Loading