Ins-DetCLIP: Aligning Detection Model to Follow Human-Language Instruction

Published: 16 Jan 2024, Last Modified: 13 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Multimodal learning, object detection
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: This paper introduces Instruction-oriented Object Detection (IOD), a new task that enhances human-computer interaction by enabling object detectors to understand user instructions and locate relevant objects. Unlike traditional open-vocabulary object detection tasks that rely on users providing a list of required category names, IOD requires models to comprehend natural-language instructions, contextual reasoning, and output the name and location of the desired categories. This poses fresh challenges for modern object detection systems. To develop an IOD system, we create a dataset called IOD-Bench, which consists of instruction-guided detections, along with specialized evaluation metrics. We leverage large-scale language models (LLMs) to generate a diverse set of instructions (8k+) based on existing public object detection datasets, covering a wide range of real-world scenarios. As an initial approach to the IOD task, we propose a model called Ins-DetCLIP. It harnesses the extensive knowledge within LLMs to empower the detector with instruction-following capabilities. Specifically, our Ins-DetCLIP employs a visual encoder (i.e., DetCLIP, an open-vocabulary detector) to extract object-level features. These features are then aligned with the input instructions using a cross-modal fusion module integrated into a pre-trained LLM. Experimental results conducted on IOD-Bench demonstrate that our model consistently outperforms baseline methods that directly combine LLMs with detection models. This research aims to pave the way for a more adaptable and versatile interaction paradigm in modern object detection systems, making a significant contribution to the field.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 4489
Loading