Keywords: Mathematical Reasoning, Skill Composition, Synthetic Data, Model Evaluation
TL;DR: We propose a human in the loop framework for generating diverse and difficult mathematical questions by composing multiple mathematical "skills" together
Abstract: Current LLM training positions mathematical reasoning as a core capability. With publicly available sources fully tapped, there is an unmet demand for diverse and challenging mathematics questions. Relying solely on human experts is both time-consuming and costly, while LLM-generated questions often lack the requisite diversity and difficulty. We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach to generate a diverse array of challenging math questions. Initially, leveraging LLM metacognition skills [Didolkar et al., 2024], a strong LLM is used to extract core "skills'' from existing math datasets. These skills serve as the basis for generating novel and difficult questions by prompting the LLM with random pairs of core skills that must be utilized in the question. The use of two very different skills within each question makes finding such questions an ``out of distribution'' task for both LLMs and humans. Our pipeline employs LLMs to iteratively generate and refine questions and solutions through multi-turn prompting. Human annotators then verify and further refine the questions, with their efficiency enhanced via further LLM interactions. Applying this pipeline on skills extracted from MATH dataset [Hendrycks et al., 2024] resulted in **MATH$^2$** - a dataset of higher quality math questions, as evidenced by: (a) Lower performance of all models on MATH$^2$ than on MATH (b) Higher performance on MATH when using MATH$^2$ questions as in-context examples. Although focused on mathematics, our methodology seems applicable to other domains requiring structured reasoning, and potentially as a component of *scalable oversight*. Also of interest is a striking relationship observed between models' performance on the new dataset: the success rate on MATH$^2$ is the square on MATH. This suggests that successfully solving the question in MATH$^2$ requires a nontrivial combination of two distinct math skills.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9725
Loading