Learning with Logical Constraints but without Shortcut SatisfactionDownload PDF

Published: 01 Feb 2023, Last Modified: 25 Feb 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: training with logical constraints, logical formula encoding, variational learning, stochastic gradient descent ascent
Abstract: Recent studies have started to explore the integration of logical knowledge into deep learning via encoding logical constraints as an additional loss function. However, existing approaches tend to vacuously satisfy logical constraints through shortcuts, failing to fully exploit the knowledge. In this paper, we present a new framework for learning with logical constraints. Specifically, we address the shortcut satisfaction issue by introducing dual variables for logical connectives, encoding how the constraint is satisfied. We further propose a variational framework where the encoded logical constraint is expressed as a distributional loss that is compatible with the model's original training loss. The theoretical analysis shows that the proposed approach bears some nice properties, and the experimental evaluations demonstrate its superior performance in both model generalizability and constraint satisfaction.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
12 Replies

Loading