LAION-5B: An open large-scale dataset for training next generation image-text modelsDownload PDF

Published: 17 Sept 2022, Last Modified: 23 May 2023NeurIPS 2022 Datasets and Benchmarks Readers: Everyone
Keywords: multi-modal learning, large-scale datasets, reproducibility, open source, CLIP
Abstract: Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection.
Dataset Url:
Author Statement: Yes
TL;DR: We present LAION-5B, an open, publically available dataset of 5.8B image-text pairs and validate it by reproducing results of training state-of-the-art CLIP models of different scale.
License: Creative Common CC-BY 4.0 license
Supplementary Material: pdf
Contribution Process Agreement: Yes
In Person Attendance: Yes
31 Replies