Cycle-Sync: Robust Global Camera Pose Estimation through Enhanced Cycle-Consistent Synchronization

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Robust Synchronization, Camera Location Estimation, Structure from Motion, Computer Vision
TL;DR: We introduce Cycle-Sync, a robust and global framework for estimating camera poses (rotations and locations).
Abstract: We introduce Cycle-Sync, a robust and global framework for estimating camera poses (both rotations and locations). Our core innovation is a location solver that adapts message-passing least squares (MPLS) - originally developed for group synchronization - to the camera localization setting. We modify MPLS to emphasize cycle-consistent information, redefine cycle consistencies using estimated distances from previous iterations, and incorporate a Welsch-type robust loss. We establish the strongest known deterministic exact-recovery guarantee for camera location estimation, demonstrating that cycle consistency alone enables the lowest sample complexity to date. To further boost robustness, we introduce a plug-and-play outlier rejection module inspired by robust subspace recovery, and we fully integrate cycle consistency into MPLS for rotation averaging. Our global approach avoids the need for bundle adjustment. Experiments on synthetic and real datasets show that Cycle-Sync consistently outperforms leading pose estimators, including full structure-from-motion pipelines with bundle adjustment.
Supplementary Material: zip
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 18045
Loading