Keywords: LLM-as-a-judge, generative reward models, reinforcement learning with verifiable rewards (RLVR)
TL;DR: We discover that LLMs used as judges are easily fooled by "master key" phrases like "Solution" or just a colon ('':''). To solve this, we leverage a special data augmentation strategy to train new reward models that are robust to such hacking.
Abstract: Large language models (LLMs) are increasingly trusted as automated judges, assisting evaluation and providing reward signals for training other models, particularly in reference-based settings like Reinforcement Learning with Verifiable Rewards (RLVR). However, we uncover a critical vulnerability even in this reference-based paradigm: generative reward models are systematically susceptible to reward hacking. We find that superficial inputs, which we term ''master keys'' such as non-word symbols (e.g., '':'' or ''.'') or generic reasoning openers (e.g., ''Thought process:'' or ''Let's solve this problem step by step.''), can consistently elicit false positive rewards without any substantive reasoning. Our systematic evaluation demonstrates this is a widespread failure affecting a diverse range of models, including leading proprietary systems such as GPT-o1 and Claude-4. These results challenge the assumed robustness of LLM judges and pose a significant threat to their reliability. To address this, we propose a simple yet effective data augmentation strategy using truncated model outputs as adversarial negative examples. The resulting Master Reward Models (Master-RMs) demonstrate state-of-the-art robustness against these ``master key'' attacks while maintaining high performance in standard evaluation settings. We supplement these findings with a comprehensive analysis of the vulnerability across model scales, prompt variations, and common inference-time strategies, offering insights to guide future research on robust LLM evaluation.
Submission Number: 81
Loading