Keywords: reinforcement learning
TL;DR: A new benchmark for algorithms research in offline goal-conditioned RL.
Abstract: Offline goal-conditioned reinforcement learning (GCRL) is a major problem in reinforcement learning (RL) because it provides a simple, unsupervised, and domain-agnostic way to acquire diverse behaviors and representations from unlabeled data without rewards. Despite the importance of this setting, we lack a standard benchmark that can systematically evaluate the capabilities of offline GCRL algorithms. In this work, we propose OGBench, a new, high-quality benchmark for algorithms research in offline goal-conditioned RL. OGBench consists of 8 types of environments, 85 datasets, and reference implementations of 6 representative offline GCRL algorithms. We have designed these challenging and realistic environments and datasets to directly probe different capabilities of algorithms, such as stitching, long-horizon reasoning, and the ability to handle high-dimensional inputs and stochasticity. While representative algorithms may rank similarly on prior benchmarks, our experiments reveal stark strengths and weaknesses in these different capabilities, providing a strong foundation for building new algorithms. Project page: https://seohong.me/projects/ogbench
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5098
Loading