Abstract: The maximum entropy method has been successfully employed to explain stationary spiking activity of a neural population by using fewer features than the number of possible activity patterns. Modeling network activity in vivo, however, has been challenging because features such as spike-rates and interactions can change according to sensory stimulation, behavior, or brain state. To capture the time-dependent activity, Shimazaki et al. (PLOS Comp Biol, 2012) previously introduced a state-space framework for the latent dynamics of neural interactions. However, the exact method suffers from computational cost; therefore its application was limited to only $${\sim }15$$ neurons. Here we introduce the pseudolikelihood method combined with the TAP or Bethe approximation to the state-space model, and make it possible to estimate dynamic pairwise interactions of up to 30 neurons. These analytic approximations allow analyses of time-varying activity of larger networks in relation to stimuli or behavior.
0 Replies
Loading