Progressive Self-supervised Multi-objective NAS for Image Classification

Published: 01 Jan 2024, Last Modified: 13 Nov 2024EvoApplications@EvoStar 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We introduce a novel progressive self-supervised framework for neural architecture search. Our aim is to search for competitive, yet significantly less complex, generic CNN architectures that can be used for multiple tasks (i.e., as a pretrained model). This is achieved through cartesian genetic programming (CGP) for neural architecture search (NAS). Our approach integrates self-supervised learning with a progressive architecture search process. This synergy unfolds within the continuous domain which is tackled via multi-objective evolutionary algorithms (MOEAs). To empirically validate our proposal, we adopted a rigorous evaluation using the non-dominated sorting genetic algorithm II (NSGA-II) for the CIFAR-100, CIFAR-10, SVHN and CINIC-10 datasets. The experimental results showcase the competitiveness of our approach in relation to state-of-the-art proposals concerning both classification performance and model complexity. Additionally, the effectiveness of this method in achieving strong generalization can be inferred.
Loading