The Effectiveness of Random Forgetting for Robust Generalization

Published: 16 Jan 2024, Last Modified: 08 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Adversarial training, robust overfitting, forgetting, reinitialization, robust accuracy, generalization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A method alternates between the forgetting phase, which randomly forgets a subset of weights and regulates the model's information through weight reinitialization, and the relearning phase, which mitigate robust overfitting.
Abstract: Deep neural networks are susceptible to adversarial attacks, which can compromise their performance and accuracy. Adversarial Training (AT) has emerged as a popular approach for protecting neural networks against such attacks. However, a key challenge of AT is robust overfitting, where the network's robust performance on test data deteriorates with further training, thus hindering generalization. Motivated by the concept of active forgetting in the brain, we introduce a novel learning paradigm called "Forget to Mitigate Overfitting (FOMO)". FOMO alternates between the forgetting phase, which randomly forgets a subset of weights and regulates the model's information through weight reinitialization, and the relearning phase, which emphasizes learning generalizable features. Our experiments on benchmark datasets and adversarial attacks show that FOMO alleviates robust overfitting by significantly reducing the gap between the best and last robust test accuracy while improving the state-of-the-art robustness. Furthermore, FOMO provides a better trade-off between the standard and robust accuracy outperforming baseline adversarial methods. Finally, our framework is robust to AutoAttacks and increases generalization in many real-world scenarios.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 8178
Loading