Abstract: The proliferation of legal documents in various formats and their dispersion across multiple courts present a significant challenge for users seeking precise matches to their information requirements. Despite notable advancements in legal information retrieval systems, research into legal recommender systems remains limited. A plausible factor contributing to this scarcity could be the absence of extensive publicly accessible datasets or benchmarks. While a few studies have emerged in this field, a comprehensive analysis of the distinct attributes of legal data that influence the design of effective legal recommenders is notably absent in the current literature. This paper addresses this gap by initially amassing a comprehensive session-based dataset from Jusbrasil, one of Brazil’s largest online legal platforms. Subsequently, we scrutinize and discourse key facets of legal session-based recommendation data, including session duration, types of recommendable legal artifacts, coverage, and popularity. Furthermore, we introduce the first session-based recommendation benchmark tailored to the legal domain, shedding light on the performance and constraints of several renowned session-based recommendation approaches. These evaluations are based on real-world data sourced from Jusbrasil.
External IDs:dblp:journals/ail/DominguesMMS25
Loading