Robust Rayleigh Quotient Minimization and Nonlinear Eigenvalue ProblemsOpen Website

2018 (modified: 08 Nov 2022)SIAM J. Scientific Computing 2018Readers: Everyone
Abstract: We study the robust Rayleigh quotient optimization problem where the data matrices of the Rayleigh quotient are subject to uncertainties. We propose to solve such a problem by exploiting its characterization as a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv). For solving the NEPv, we show that a commonly used iterative method can be divergent due to a wrong ordering of the eigenvalues. Two strategies are introduced to address this issue: a spectral transformation based on nonlinear shifting and a reformulation using second-order derivatives. Numerical experiments for applications in robust generalized eigenvalue classification, robust common spatial pattern analysis, and robust linear discriminant analysis demonstrate the effectiveness of the proposed approaches.
0 Replies

Loading