Abstract: Beyond classical domain-specific adversarial training, a recently proposed task-specific framework has achieved a great success in single source domain adaptation by utilizing task-specific decision boundaries. However, compared to single-source-single-target setting, multi-source domain adaptation (MDA) shows more powerful capability to handle with most real-life cases. To align target domain with diverse multi-source domains using task-specific decision boundaries, we provide a deep insight of task-specific framework on MDA for the first time. Accordingly, we propose a novel task-specific multi-source domain adaptation method (TMDA) with a clustering embedded adversarial training process. Specifically, the proposed TMDA detects and refines less discriminative target representations through a max-min optimization over two adversarial task-specific classifiers. Moreover, our analysis implies that scattered multi-source representations disturb the adversarial training under the task-specific framework. To tight up the dispersed source representations, we embeds a relationship-based domain clustering into TMDA. Empirical results demonstrate that our TMDA outperforms state-of-the-art methods on toy dataset, sentiment analysis and digit classification.
0 Replies
Loading