Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems

Published: 01 Jan 2024, Last Modified: 15 May 2025AISTATS 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We consider stochastic optimization problems with heavy-tailed noise with structured density. For such problems, we show that it is possible to get faster rates of convergence than $O(K^{-2(\alpha - 1) / \alpha})$, when the stochastic gradients have finite $\alpha$-th moment, $\alpha \in (1, 2]$. In particular, our analysis allows the noise norm to have an unbounded expectation. To achieve these results, we stabilize stochastic gradients, using smoothed medians of means. We prove that the resulting estimates have negligible bias and controllable variance. This allows us to carefully incorporate them into clipped-SGD and clipped-SSTM and derive new high-probability complexity bounds in the considered setup.
Loading