UrgenGo: Urgency-Aware Transparent GPU Kernel Launching for Autonomous Driving

Published: 01 Jan 2025, Last Modified: 05 Nov 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The rapid advancements in autonomous driving have introduced increasingly complex, real-time GPU-bound tasks critical for reliable vehicle operation. However, the proprietary nature of these autonomous systems and closed-source GPU drivers hinder fine-grained control over GPU executions, often resulting in missed deadlines that compromise vehicle performance. To address this, we present UrgenGo, a non-intrusive, urgency-aware GPU scheduling system that operates without access to application source code. UrgenGo implicitly prioritizes GPU executions through transparent kernel launch manipulation, employing task-level stream binding, delayed kernel launching, and batched kernel launch synchronization. We conducted extensive real-world evaluations in collaboration with a self-driving startup, developing 11 GPU-bound task chains for a realistic autonomous navigation application and implementing our system on a self-driving bus. Our results show a significant 61% reduction in the overall deadline miss ratio, compared to the state-of-the-art GPU scheduler that requires source code modifications.
Loading