Towards Understanding Multi-Round Large Language Model Reasoning: Approximability, Learnability and Generalizability

ICLR 2025 Conference Submission112 Authors

13 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Model, Auto-regressive Language Model, Next-token Prediction
Abstract: Recent advancements in cognitive science and multi-round reasoning techniques for Large Language Models (LLMs) suggest that iterative thinking processes improve problem-solving performance in complex tasks. Inspired by this, approaches like Chain-of-Thought, debating, and self-refinement have been applied to auto-regressive LLMs, achieving significant successes in tasks such as mathematical reasoning, commonsense reasoning, and multi-hop question answering. Despite these successes, the theoretical basis for how multi-round reasoning enhances problem-solving abilities remains underexplored. In this work, we investigate the approximation, learnability, and generalization properties of multi-round auto-regressive models. We show that Transformers with finite context windows are universal approximators for steps of Turing-computable functions and can approximate any Turing-computable sequence-to-sequence function through multi-round reasoning. We extend PAC learning to sequence generation and demonstrate that multi-round generation is learnable even when the sequence length exceeds the model's context window. Finally, we examine how generalization error propagates across rounds, and show how the aforementioned approaches can help constrain this error, ensuring outputs stay within an expectation boundary. This work sheds light on the systemic theoretical foundations of multi-round sequence learning and reasoning, emphasizing its role in inference complexity.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 112
Loading